Search results for " Resonance"

showing 10 items of 5579 documents

Controlled turbulence regime of electron cyclotron resonance ion source for improved multicharged ion performance

2020

Fundamental studies of excitation and non-linear evolution of kinetic instabilities of strongly nonequlibrium hot plasmas confined in open magnetic traps suggest new opportunities for fine-tuning of conventional electron cyclotron resonance (ECR) ion sources. These devices are widely used for the production of particle beams of high charge state ions. Operating the ion source in controlled turbulence regime allows increasing the absorbed power density and therefore the volumetric plasma energy content in the dense part of the discharge surrounded by the ECR surface, which leads to enhanced beam currents of high charge state ions. We report experiments at the ECR ion source at the JYFL accel…

010302 applied physicsAccelerator Physics (physics.acc-ph)Materials scienceAcoustics and UltrasonicsIon beamFOS: Physical sciencesPlasmaCondensed Matter PhysicsKinetic energy7. Clean energy01 natural sciencesElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical sciencesPhysics - Accelerator PhysicsAtomic physicsExcitationBeam (structure)
researchProduct

X-ray diffraction and Raman spectroscopy studies in Na1/2Bi1/2TiO3-SrTiO3-PbTiO3 solid solutions

2016

The long and short range orders in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 solid solutions were studied by x-ray diffraction and Raman spectroscopy. X-ray diffraction patterns for these composition...

010302 applied physicsDiffractionMaterials scienceAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeNuclear magnetic resonance0103 physical sciencesX-ray crystallographysymbols0210 nano-technologyRaman spectroscopySolid solutionFerroelectrics
researchProduct

Analog isolated electronic dynamometer based on a magnetoresistive current sensor.

2017

In this work, an electronic system is presented to measure the force applied by a solenoid. The originality of the work is focused on the use of a magnetoresistive current sensor to provide the isolation barrier needed in the actual industrial plant where the solenoids are working. The design of the electronic system is presented as well as experimental measurements as a result of a calibration process showing a negligible hysteresis with that specific sensor. The magnetoresistive current sensor is used to develop transmission functions rather than playing its usual sensing roles.

010302 applied physicsDynamometerMagnetoresistancebusiness.industryComputer science010401 analytical chemistryElectrical engineeringProcess (computing)Solenoid01 natural sciences0104 chemical sciencesHysteresisNuclear magnetic resonanceTransmission (telecommunications)0103 physical sciencesCalibrationCurrent sensorbusinessInstrumentationThe Review of scientific instruments
researchProduct

Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source

2013

Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 …

010302 applied physicsIonizationMaterials scienceta114[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Particle acceleratorCharge (physics)Plasma7. Clean energy01 natural sciencesIon sourceElectron cyclotron resonanceIonlaw.inventionNuclear physicsBreeder (animal)lawIonization0103 physical sciences010306 general physicsInstrumentationComputingMilieux_MISCELLANEOUS
researchProduct

Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN/MnN exchange-coupled bilayers

2016

010302 applied physicsMagnetizationNuclear magnetic resonanceMaterials scienceCondensed matter physics0103 physical sciences02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technologyAnisotropyEpitaxy01 natural sciencesPhysical Review B
researchProduct

A review on LiNixCo1−2xMnxO2 (0.1 ≤ x ≤ 0.33) cathode materials for rechargeable Li-ion batteries

2021

Abstract Electrochemical and physical properties of LiNixCo1−2xMnxO2 (0.1 ≤ x ≤ 0.33) electrode materials prepared by self-combustion were investigated. Pure LiNixCo1−2xMnxO2 (x = 0.1, 0.2, 0.33) materials with single phase and R-3 m layered structure were obtained as confirmed by X-ray diffraction. Energy Dispersive Spectroscopy, Scanning Electron Microscopy are commonly used to determine the chemical composition and the distribution of particle size of the three samples. The electrochemical performances of the samples were measured at different current rates in the 3–4.5 V potential range. The studied materials exhibit good discharge capacity. The magnetic susceptibility measurements and …

010302 applied physicsMaterials scienceAnalytical chemistryEnergy-dispersive X-ray spectroscopyFonts d'energia02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic susceptibilityCathodeIonlaw.inventionElectroquímicaParamagnetismlaw0103 physical sciencesDiamagnetism0210 nano-technologySpectroscopyElectron paramagnetic resonanceMaterials
researchProduct

Magnetization reversal of the domain structure in the anti-perovskite nitride Co3FeN investigated by high-resolution X-ray microscopy

2016

We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co3FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nano…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainGeneral Physics and AstronomyMagnetic resonance force microscopyLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnologyMagnetic hysteresis01 natural sciencesMagnetic susceptibilityCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyX-ray magnetic circular dichroism0103 physical sciencesMagnetic force microscope0210 nano-technologyJournal of Applied Physics
researchProduct

Modification of magnetic anisotropy in Ni thin films by poling of (011) PMN-PT piezosubstrates

2016

ABSTRACTThis study reports the magnetic and magnetotransport properties of 20 nm thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, is found to depend on the polarization state of the piezosubstrate. Upon poling the PMN-PT substrate, which results in a transfer of strain to the Ni film, the MR value decreases by a factor of 12 at room temperature and a factor of 21 at 50 K for the current direction along the PMN-PT [100] direction, and slightly increases for the [01] current direction. Simultaneously, a strong increase in the …

010302 applied physicsMaterials scienceCondensed matter physicsMagnetoresistancePoling02 engineering and technologySubstrate (electronics)Sputter depositionCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic anisotropyNuclear magnetic resonanceArtificial multiferroicsthin films0103 physical sciencesmagnetoelectric couplingddc:530CrystalliteThin film0210 nano-technology
researchProduct

A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions

2019

Single-ion sensitivity is obtained in precision Penning-trap experiments devoted to light (anti)particles or ions with low mass-to-charge ratios, by adding an inductance coil to an amplifier connected to the trap, both operated at 4 K. However, single-ion sensitivity has not been reached on heavy singly or doubly charged ions. In this publication, we present a new system to reach this point, based on the use of a quartz crystal as an inductance, together with a newly developed broad-band (BB) amplifier. We detect the reduced-cyclotron frequency of 40Ca+ ions stored in a 7-tesla open-ring Penning trap. By comparing the detected electric signal obtained with the BB amplifier and the fluoresce…

010302 applied physicsMaterials scienceEquivalent series resistanceAmplifierPenning trap01 natural sciences7. Clean energySignalFourier transform ion cyclotron resonance010305 fluids & plasmasIonCrystal0103 physical sciencesAtomic physicsInstrumentationSensitivity (electronics)Review of Scientific Instruments
researchProduct

EPR in glass ceramics

2019

Abstract The development of novel materials requires a profound understanding of the relationship between a material's performance and its structural properties. Electron paramagnetic resonance (EPR) is a well-established technique for a direct detection and identification of paramagnetic defects in solids. This chapter provides an overview of the applicability of continuous wave EPR spectroscopy in the studies of glass ceramics focusing on transition metal (Mn2 +, Cu2 +, Cr3 +) and rare earth (Gd3 +, Eu2 +, Er3 +, Yb3 +) ion local structure analysis. EPR spectra features of the above-mentioned paramagnetic probes in glasses and glass ceramics are compared and discussed in detail. The chapt…

010302 applied physicsMaterials scienceGlass-ceramic02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral lineIonlaw.inventionParamagnetismTransition metallawvisual_art0103 physical sciencesvisual_art.visual_art_mediumContinuous wavePhysical chemistryCeramic0210 nano-technologyElectron paramagnetic resonance
researchProduct